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Abstract 
The operation of a Free Electron Laser in TESLA 

project requires very short bunches. This results in a very 
long interaction length between the bunch and the 
wakefields. From this fact severe problems for computer 
simulations arise. The longitudinal case was recently 
studied intensively by Novokhatski et al.[1]. In this paper 
we study mainly the transverse forces. Using a recently 
developed time domain numerical approach, we calculate 
the short-range transverse wakefields of the TESLA linac 
accelerating structure. We also consider behaviour of 
transverse wake potential in a periodic array of cavities 
and compare it with wake potential of the TESLA quasi-
periodic structure. 

INTRODUCTION 
For  the operation of the Free Electron Laser in the 

TESLA project very short bunches of length 50σ =  
micrometers or less are required. This bunch length is 
very short compared to the iris radius a  of the 
accelerating structure (σ/a ~ 0.0014). This induces severe 
problems for computer simulations. The longitudinal case 
was recently studied intensively by Novokhatski et al. [1]. 
It was shown that as for periodic structures and very short 
bunches the loss factor becomes independent of the bunch 
length. In this paper we study mainly the transverse 
forces. Using a recently developed time domain 
numerical approach [2], we calculate the short-range 
transverse wakefields in the TESLA accelerating structure 
of three cryomodules with total length ~36m. Wakefields 
in the TESLA cryomodule and corresponding integral 
parameters are given for bunches of different length. We 
also consider behaviour of transverse wake potential in a 
periodic array of cavities and compare it with wake 
potential of the TESLA quasi-periodic structure. The 
numerical results are compared with analytical 
estimations and it is shown that, the same as for periodic 
structure [3], for very short bunches the kick factor 
decreases linear with the bunch length. 

ANALYTICAL ESTIMATIONS 
We consider an axially symmetric structures and bunch 

with charge Q  moving parallel to the axis. The bunch 
with longitudinal distribution ( )q s  travels near the axis, 
and thus the longitudinal loss is dominated by monopole 
fields  
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 Short bunches interact with single cavity and periodical 
structure in a different way. However, in both cases the 
wake functions 0 ( )w s!  and 1 ( )w s⊥  at short distance s  are 
approximately related in the simple way [4] 
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For short bunches in a single cavity the well known result 
of K. Bane and M. Sands [5] reads as 
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where a  is the iris radius and g  is the cavity gap. As we 
see relation (1) holds for the wakes (2). 
 In the periodic structure the short range wake functions 
can be approximated by the relations [4] 
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where 0 1, ,A s s  are fit parameters to be defined. If 0 1s s=  
then relation (1) holds exactly. However, in the common 
case 0 1s s≠  we have only 
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||2

2(0) (0)sw w
a⊥∂ = .   (5) 

This corresponds to a small difference of the right hand 
and left- hand sides in (1) for short distances s . 
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 Fig. 1: Geometry of the TESLA cryomodule. 
 

The TESLA linac consists of a long chain of 
cryomodules. One cryomodule of total length 12 m 
contains 8 cavities and 9 bellows as shown in Fig.1. The 
iris radius is 35 mm and beam tubes radius is 39 mm. 
 The wakefields for Gaussian bunches up to 50µmσ =  
are studied. To reach steady state solution the structure of 
3 cryomodules with total length 36m considered.   

___________________________________________  
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SINGLE-CELL STRUCTURE 
 As the first step we study wake fields in one middle cell 
of 9-cell TESLA cavity with aperture 35mma = . From 
the fit of numerical data to formulas (2) we obtain 
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where  g  is �effective� cavity gap, 0.84g L= , expressed 
through the cell period 10.54cmL =  in the TESLA 
cavity. As we see relation (1) holds exactly. 
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Fig. 2: Comparison of  numerical and analytical integral 

parameters for a TESLA single-cell structure. 
 
 Fig.2 (left) shows the analytical (solid line) and 
numerical (points) loss factors and energy spreads 
(dashed line and points).  On the right side of the figure 
the transversal kick and kick spread are shown.  As we 
see the longitudinal loss factor scales as 0.5( ), 0O σ σ− → , 
and transversal kick factor scales as 0.5( ), 0O σ σ → . 

 PERIODIC STRUCTURE 
 In the case of a periodic structure the induced by short 
bunches wake fields can not be simply calculated as the 
sum of the single cell contributions, because the field 
traveling with the bunch is strongly modified and reach 
the steady state solution only after ~ 22 /( )N a Lσ=   cells. 
To study the steady state solution in the periodic structure 
we calculate wake fields in the chain of 144 cells. 
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Fig. 3: Modification of the transverse wake potentials 
 and the kick factor in periodic structure. 

 
 Fig. 3. shows the transverse wake potentials in the first 
nine cells (left) and the kick factor per cell for bunch with 

200µmσ = (right) as a function of the number of cells. 
The kick factor converges to the steady state value. 
 From the fit of numerical data to formulas (3), (4) we 
obtain with  1.025A = , 35mma = ,  wake functions per 
cell period 10.54 [cm/cell]L =  

   || 0( ) 3.47exp( )[V/pC/cell]w s s s= − ,    
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where 3
0 3.46 10s −= ⋅  and 3

1 1.4 10s −= ⋅ . Thus, for 0 1s s≠   
relation (1) is not fulfilled exactly but relation (5) holds. 
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Fig. 4: Comparison of  numerical and analytical 

integral parameters for periodic structure. 
 
 Fig. 4(left) shows the analytical (solid line) and 
numerical (points) loss factors and energy spreads 
(dashed line and points) for cell number 144. On the right 
side of the figure the transversal kick and kick spread are 
shown. As we see in the periodic case longitudinal loss 
factor becomes independent from the bunch length and 
transversal kick factor scales as ( ), 0O σ σ → . 

 TESLA  ACCELERATING  STRUCTURE 
 The TESLA linac can be considered as multi-periodic 
structure: the first elementary period is the cavity cell, the 
second one is the 9-cell cavity with bellow and beam 
tubes and the third one is the cryomodule, housing 8 
cavities with 9 bellows. In addition, some extra effects, 
like the larger tube diameter with respect to the aperture 
and different form of end cells of the cavity have to be 
taken into account.  To reach steady state solution we 
calculate wake fields in the chain of 3 cryomodules. 
 From the fit of the numerical data to formulas (3), (4) 
we obtain with 1.46A =  and active length of cryomodule 

8 1.036 [m/module]aL = ⋅  the wake functions per 
cryomodule  
     || 0( ) 344exp( )[V/pC/module]w s s s= − , 
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where 3
0 1.74 10s −= ⋅  and 3

1 0.92 10s −= ⋅ . In formulas (3), 
(4) we  used �effective� iris radius 35.57mma a= = . It 
was chosen as value between the pipe and iris radii to 
fulfill relation (5) for the above given wake functions. 
Thus, for 0 1s s≠   relation (1) is not fulfilled exactly but 



relation (5) holds again (with a a= ). Like in the periodic 
case the transversal wake function scales as ( ), 0O s s → . 

To obtain the formulas for the wake function on the 
unit of active length the above relations should be divided 
by 8.288 [m/module]aL = . 
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Fig. 5: Comparison of analytical and numerical longitudinal 

wakes in the third cryomodule ( 50 700µmσ = ÷ ). 
 

Fig. 5 (left) shows numerical (gray solid lines) and 
analytical (black dashed lines) wake potentials for 
bunches with 500,250,125,50µmσ = . The deviation of 
the curves for the shortest bunch can be explained by the 
insufficiency of  the 3 cryomodules to reach the steady-
state solution. Fig. 5 (right) shows the wakes (gray lines) 
together with the analytical wake function (black dashed 
line) which tends to be the envelope function to all wakes. 
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Fig. 6: Comparison of analytical and numerical transversal wake 

potentials in the third cryomodule ( 50 700µmσ = ÷ ). 
 
 Fig. 6 shows likewise the results for transversal wakes. 
Again, the analytical wake function (black dashed line) 
tends to be the envelope function to all wakes (see Fig.6 
right). 
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Fig. 7: Comparison of  numerical and analytical 

integral parameters for the third TESLA cryomodule. 
 
 Fig. 7 (left) shows the analytical (solid line) and 

numerical (points) loss factors and energy spreads 
(dashed line and points) in the third TESLA cryomodule. 
On the right side of the figure transversal kick and kick 
spread are shown. 

Table 1. Comparison of the numerical and 
analytical loss factors. 

  
Loss factor/V/pC  

/ µmσ  Numerical Analytical TDR 

1000 86.4 90.2 90.4 
700 95.9 95.8 95.6 
500 105 104 103 
400 110 110 108 
300 117 116 114 
250 122 120 117 
125 135 133 128 
75 138 141 134 
50 143 146 138 

 
Table 2. Comparison of the numerical and 

analytical kick factors. 

Kick factor/V/pC/m  
/µmσ  Numerical Analytical TDR 

1000 138 137 153 
700 109 108 130 
500 85.4 85.1 111 
400 72.5 72.2 99.6 
300 58.1 57.9 86.8 
250 50.2 50.1 79.6 
125 28.8 28.3 56.9 
75 18.2 18.1 44.3 
50 12.8 12.6 36.3 

 
 Finally, in Tables 1,2 we compare numerical values 
with analytical ones obtained from the above formulas 
(�analytical�) and the formulas given in [6] (�TDR�). As 
we see for the longitudinal case the results agree inside of 
the 5% level. For the transversal case the TDR formula  

 ( ) V( ) 1290 2600
pC×m×moduleaw s L s s⊥

 
= −  

 
 

shows for the short bunches wrong 0.5( ), 0O s s → , 
behavior and overestimates the kicks. 
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